

RAN-1187

B.Sc. Sem-VI Examination

March / April - 2019

MTH-605-Mathematics

(Discrete Mathematics)

(Old or New to be mentioned where necessary)

[Total Marks: 50

સૂચના : / Instructions

નીચે દર્શાવેલ 🖝 નિશાનીવાળી વિગતો ઉત્તરવહી પર અવશ્ય લખવી. Fill up strictly the details of 🖝 signs on your answer book	Seat No.:
Name of the Examination:	
☞ B.Sc. Sem-VI	
Name of the Subject :	
■ MTH-605-Mathematics	
Subject Code No.: 1 1 8 7	Student's Signature

- (1) All questions are compulsory.
- (2) Follow usual notations.
- (3) Figures to the right indicate marks of the question.

Que:1 Answer any FIVE as directed.

[10]

- (1) State and prove absorption law with respect to meet and join operations.
- (2) Define: Lattice Homomorphism.
- (3) State modular inequality in a lattice.
- (4) Write the Boolean expression $(x_1 * x_2)$ in the sum of the products canonical form in the variables $x_1 x_2$ and x_3 .
- (5) Define sub lattice with one illustration.
- (6) Show that 1 is the only complement of 0.
- (7) In Boolean algebra, prove that $a \oplus (a' * b) = a \oplus b$
- (8) In a Boolean Algebra, prove that $a \le b \Rightarrow a + b$. c = b. (a + c).

RAN-1187 [1] [P.T.O.]

Que:2 Answer the following (any TWO).

[10]

- (1) Define a partially ordered relation. Prove that $\langle p(A), \subseteq \rangle$ is a partially ordered set. Where $\rho(A)$ is a power set of A and define the relation \subseteq (inclusion).
- (2) Let $X = \{1, 2, 3, 4, 6, 8, 12, 24, 48\}$ and the relation " \leq " be the divides. Draw the Hasse diagram of $< X, \leq >$. Is it a sub lattice of $< l_+$, D > ? Justify.
- (3) Let R denote a relation on the set of ordered pairs of positive integers such that $\langle x y \rangle R \langle u, v \rangle$ if and only if xv = yu. Show that R is an equivalence relation.

Que:3 Answer the following (any TWO).

[10]

- (1) Let (L, \leq) be a lattice. For any $a, b, c \in L$, prove that
 - (a) $a \oplus (b * c) \leq (a \oplus b) * (a \oplus c)$
 - (b) $a*(b\oplus c) \ge (a*b) \oplus (a*c)$
- (2) Let $< B, *, \oplus, ', 0, 1 >$ is a Boolean algebra. Let S be a non empty subset of B. If S preserving the operations \oplus and ' then prove that $< S, *, \oplus, ', 0, 1 >$ is a sub-boolean algebra.
- (3) Let (L, \leq) be a lattice. For any $a, b, c \in L$, prove that $a \leq b \Leftrightarrow a * b = a \Leftrightarrow a \oplus b = b$

Que:4 Answer the following (any TWO).

[10]

- (1) Obtain the sum of products canonical form of the Boolean expression $x_1 \oplus (x_2 * x_3')$.
- (2) Simplify the following Boolean expressions:
 - (a) $(a * b)' \oplus (a \oplus b)'$
 - (b) $(a' * b' * c) \oplus (a * b' * c) \oplus (a * b' * c')$
- (3) Let $\langle B, *, \oplus, ', 0, 1 \rangle$ be a Boolean Algebra. Define the operations '+' and $'\cdot'$ on the elements of B by $a+b=(a*b')\oplus(a'*b)$ and $a\cdot b=a*b$; then prove that
 - (a) a + a = 0
 - (b) $(a+b) \oplus a \cdot b = a * b$
 - (c) $a \cdot (b+c) = (a \cdot b) + (a \cdot c)$

RAN-1187 |

[2]

[Contd.

Que:5 Answer the following (any TWO).

[10]

- (1) Use Karnaugh map representation to find the minimal sum of products of the function $f(a, b, c, d) = \Sigma (5,7,10,13,15)$
- (2) Use Quine McCluskey algorithm to find the minimal sum of products form of $f(a, b, c, d) = \Sigma(10,12,13,14,15)$.
- (3) Find the minimal sum of products of the function $f(a, b, c, d) = \Sigma(0,2,6,7,8,9,13,15)$ by using Karnaugh map representation.

RAN-1187 [3] [880]