RAN-1187

B.Sc. Sem-VI Examination

March / April - 2019

MTH-605-Mathematics

(Discrete Mathematics)

(Old or New to be mentioned where necessary)

સૂચના :/ Instructions

(1) All questions are compulsory.
(2) Follow usual notations.
(3) Figures to the right indicate marks of the question.

Que:1 Answer any FIVE as directed.
(1) State and prove absorption law with respect to meet and join operations.
(2) Define : Lattice Homomorphism.
(3) State modular inequality in a lattice.
(4) Write the Boolean expression $\left(x_{1} * x_{2}\right)$ in the sum of the products canonical form in the variables $x_{1} x_{2}$ and x_{3}.
(5) Define sub lattice with one illustration.
(6) Show that 1 is the only complement of 0 .
(7) In Boolean algebra, prove that $a \oplus\left(a^{\prime} * b\right)=a \oplus b$
(8) In a Boolean Algebra, prove that $a \leq b \Rightarrow a+b . c=b .(a+c)$.

Que:2 Answer the following (any TWO).
(1) Define a partially ordered relation. Prove that $\langle p(A), \subseteq\rangle$ is a partially ordered set. Where $\rho(A)$ is a power set of A and define the relation \subseteq (inclusion).
(2) Let $X=\{1,2,3,4,6,8,12,24,48\}$ and the relation " \leq " be the divides. Draw the Hasse diagram of $<X, \leq>$. Is it a sub lattice of $<l_{+}, \mathrm{D}>$? Justify.
(3) Let R denote a relation on the set of ordered pairs of positive integers such that $\langle x y\rangle R\langle u, v\rangle$ if and only if $x v=y u$. Show that R is an equivalence relation.

Que:3 Answer the following (any TWO).

(1) Let (L, \leq) be a lattice. For any $a, b, c \in \mathrm{~L}$, prove that
(a) $\quad a \oplus(b * c) \leq(a \oplus b) *(a \oplus c)$
(b) $\quad a *(b \oplus c) \geq(a * b) \oplus(a * c)$
(2) Let $<B, *, \oplus,{ }^{\prime}, 0,1>$ is a Boolean algebra. Let S be a non empty subset of B. If S preserving the operations \oplus and 'then prove that $<S, *, \oplus,{ }^{\prime}, 0,1>$ is a sub-boolean algebra.
(3) Let (L, \leq) be a lattice. For any $a, b, c \in L$, prove that $a \leq b \Leftrightarrow a * b=a \Leftrightarrow a \oplus b=b$

Que:4 Answer the following (any TWO).
(1) Obtain the sum of products canonical form of the Boolean expression $x_{1} \oplus\left(x_{2} * x_{3}{ }^{\prime}\right)$.
(2) Simplify the following Boolean expressions:
(a) $\quad(a * b)^{\prime} \oplus(a \oplus b)^{\prime}$
(b) $\quad\left(a^{\prime} * b^{\prime} * \mathrm{c}\right) \oplus\left(a * b^{\prime} * c\right) \oplus\left(a * b^{\prime} * c^{\prime}\right)$
(3) Let $\left\langle B, *, \oplus, '^{\prime}, 0,1\right\rangle$ be a Boolean Algebra. Define the operations $'+'$ and ' \cdot ' on the elements of B by $a+b=\left(a * b^{\prime}\right) \oplus\left(a^{\prime} * b\right)$ and $a \cdot b=a * b$; then prove that
(a) $a+a=0$
(b) $(a+b) \oplus a \cdot b=a * b$
(c) $a \cdot(b+c)=(a \cdot b)+(a \cdot c)$

Que:5 Answer the following (any TWO).

(1) Use Karnaugh map representation to find the minimal sum of products of the function $f(a, b, c, d)=\Sigma(5,7,10,13,15)$
(2) Use Quine McCluskey algorithm to find the minimal sum of products form of $f(a, b, c, d)=\Sigma(10,12,13,14,15)$.
(3) Find the minimal sum of products of the function $f(a, b, c, d)=\Sigma(0,2,6,7,8,9,13,15)$ by using Karnaugh map representation.

