

RAN-1186

B. Sc. Sem -VI Examination

March / April - 2019

Mathematics Paper: MTH-604

Real Analysis - IV

Time: 2 Hours] [Total Marks: 50

સૂચના : / Instructions

નીચે દર્શાવેલ ☞ નિશાનીવાળી વિગતો ઉત્તરવહી પર અવશ્ય લખવી. Fill up strictly the details of ☞ signs on your answer book	Seat No.:
Name of the Examination:	
■ B. Sc. Sem -VI	
Name of the Subject :	
Subject Code No.: 1 8 6	Student's Signature

- (1) All questions are compulsory.
- (2) Figures to the right indicate marks of corresponding question.
- (3) Follow usual notations.
- (4) Use of non-programmable scientific calculator is allowed.

1. Answer the following as directed: (Any FIVE) (10)

- (1) Prove that every finite set in any metric space is closed.
- (2) Justify: (2019,2020) is a closed subset of the metric space $\langle (2019,2020), |.| \rangle$.
- (3) Justify: $[0,1] \cup [2,3]$ is a connected set of the metric space \mathbb{R}^1 .
- (4) Prove that $(0, \infty)$ is a bounded subset of the metric space R_d and its diameter is 1.
- (5) Justify: R_d is not the complete metric space.
- (6) State Picard's Fixed Point Theorem.
- (7) (i) Give an example of a compact subset of R¹ which is not connected;
 - (ii) Give an example of a subset of R_d which is compact as well as connected.

RAN-1186] [1] [P.T.O.]

(8) State Finite - Intersection property and give its illustration in the metric space R^1 .

2. Attempt any TWO:

(10)

- (1) Let E be the subset of a metric space $\langle M, \rho \rangle$. Prove that \overline{E} ; the closure of E; is closed.
- (2) Define a closed set in a metric space. Prove that a finite intersection of closed sets in any metric space is closed.
- (3) If A and B are closed subsets of R^1 , then prove that A x B is a closed subset of R^2 .

3. Attempt any TWO:

(10)

- (1) If the metric space M is connected, then prove that every continuous characteristic function on M is constant.
- (2) If A is a connected subset of a metric space $\langle M, \rho \rangle$, then prove that \overline{A} is also connected.
- (3) Define a totally bounded set. If A is a totally bounded subset of the metric space $R_{\rm d}$, then prove that A contains only a finite number of points.

4. Attempt any TWO:

(10)

- (1) Prove that a closed subset of a complete metric space is complete.
- (2) Prove that R^2 is a complete metric space; with respect to the metric τ for R^2 defined as: τ (P,Q) = max { $|x_1 x_2|$, $|y_1 y_2|$ }; where $P = \langle x_1, y_1 \rangle \& Q = \langle x_2, y_2 \rangle$ in R^2 .
- (3) Define a contraction mapping. Prove that a mapping

$$T:\left\langle \left(0,\ \frac{1}{3}],|\bullet|\right)\right\rangle \rightarrow \left\langle \left(0,\ \frac{1}{3}],|\bullet|\right)\right\rangle$$

defined by $Tx = x^2$; for every $x \in (0, \frac{1}{3}]$; is contraction, but it does not have a fixed point.

5. Attempt any TWO:

(10)

- (1) Define a compact metric space. Prove that a closed subset of a compact metric space is compact.
- (2) Prove that: (i) Every finite set in any metric space is compact.
 - (ii) A connected subset of the metric space R_d is compact.
- (3) If the metric space M has the Heine -Borel Property, then prove that M is compact.

RAN-1186]

[2]

[880]