RAN-1183

T.Y.B. Sc. Sem -VI Examination
 March / April - 2019
 Mathematics Paper : MTH - 601
 Ring Theory

Time: 2 Hours]

[Total Marks: 50

સૂચના: / Instructions

```
નીચે દર્શાવેલ નિશાનીવાળી વિગતો ઉત્તરવહી ૫૨ અવશ્ય લખવી.
Fill up strictly the details of signs on your answer book
Name of the Examination:
T.Y.B. Sc. Sem -VI
Name of the Subject :
- Mathematics Paper : MTH - 601
```

Subject Code No.:	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{8}$	$\mathbf{3}$

(1) All questions are compulsory.
(2) Figures to the right indicate marks of corresponding question.
(3) Follow usual notations.
(4) Use of non-programmable scientific calculator is allowed.

1. Answer the following as directed : (Any FIVE)
(1) $\mathrm{R}=\{\overline{0}, \overline{2}, \overline{4}, \overline{6}, \overline{8}\}$ is a commutative ring under the binary operations ${ }^{10}$ (addition modulo 10) and x_{10} (multiplication modulo 10). Justify : Every non-zero element in this R has an inverse for x_{10}.
(2) In a ring R; prove that $a .(-b)=-(a . b)$; for all $a, b \in \mathrm{R}$.
(3) Mention all the ideals of the ring J_{13}; of integers modulo 13.
(4) If U is an ideal of a ring R with a unit element 1 and $1 \in U$, then prove that $U=R$.
(5) Prove that $\overline{3} \mid \overline{5}$ and $\overline{5} \mid \overline{3}$ in the commutative ring J_{8}; of integers modulo 8.
(6) Let R be a Euclidean ring and $a \neq 0, b \neq 0$ in R. If b is unit in R, then prove that $d(a)=d(a . b)$.
(7) Justify: $\overline{4}$ and $\overline{8}$ are relatively prime elements in the Euclidean ring J_{11}; of integers modulo 11 .
(8) Define a prime element in a Euclidean ring. Which are the prime elements in the Euclidean ring J_{7}; of integers modulo 7 ?
2. Attempt any TWO :
(1) Prove that every finite integral domain is a field.
(2) Prove that the commutative ring D is an integral domain if and only if $a, b, c \in \mathrm{D}$ with $a \neq 0$; the relation $a . b=a$. c implies that $b=c$ holds in D.
(3) Define a Boolean ring. Prove that every Boolean ring is commutative.

3. Attempt any TWO :

(1) Define the Kernel of a homomorphism. Let $\phi: R \rightarrow R^{\prime}$ be a homomorphism of a ring R into a ring R^{\prime}. Then prove that: $\phi(0)=0^{\prime}$ and $\phi(-a)=-\phi(a)$; for every a in R.
(2) Prove that a homomorphism $\phi: R \rightarrow R^{\prime}$ of a ring R into a ring R^{\prime} is an isomorphism if and only if $I(\phi)=(0)$; where $I(0)$ is the Kernel of a homomorphism ϕ.
(3) If R is a commutative ring with a unit element 1 and its only ideals are (0) and R itself, then prove that R is a field.
4. Attempt any TWO :
(1) Define a Euclidean ring. Prove that every field is a Euclidean ring.
(2) Prove that the relation of "associates" in a commutative ring R with a unit element is an equivalence relation on R.
(3) Define a greatest common divisor of two elements in a commutative ring. Prove that any two greatest common divisors of elements a, b in a Euclidean ring R are associates.

5. Attempt any TWO :

(1) Define relatively prime elements in a Euclidean ring. If a and b are relatively prime elements in a Euclidean R and $a \mid b c$, then prove that $a \mid c$.
(2) Let R be a Euclidean ring. If $\mathrm{A}=\left(a_{0}\right)$ is a maximal ideal of R, then prove that a_{0} is a prime element in R.
(3) Define unit in a commutative ring with a unit element. Let R be a Euclidean ring and a $\neq 0, b \neq 0$ in R. If b is not unit in R, then prove that $d(a)<d(a . b)$.

