

RAN-1183

T.Y.B. Sc. Sem -VI Examination

March / April - 2019

Mathematics Paper: MTH-601

Ring Theory

Time: 2 Hours] [Total Marks: 50

સૂચના : / Instructions

નીચે દર્શાવેલ ☞ નિશાનીવાળી વિગતો ઉત્તરવહી પર અવશ્ય લખવી. Fill up strictly the details of ☞ signs on your answer book	Seat No.:
Name of the Examination:	
T.Y.B. Sc. Sem -VI	
Name of the Subject :	
Subject Code No.: 1 8 3	Student's Signature

- (1) All questions are compulsory.
- (2) Figures to the right indicate marks of corresponding question.
- (3) Follow usual notations.
- (4) Use of non-programmable scientific calculator is allowed.

1. Answer the following as directed: (Any FIVE) (10)

- (1) $R = \{\bar{0}, \bar{2}, \bar{4}, \bar{6}, \bar{8}\}$ is a commutative ring under the binary operations $+_{10}$ (addition modulo 10) and x_{10} (multiplication modulo 10). Justify: Every non-zero element in this R has an inverse for x_{10} .
- (2) In a ring R; prove that a. (-b) = -(a. b); for all $a, b \in \mathbb{R}$.
- (3) Mention all the ideals of the ring J_{13} ; of integers modulo 13.
- (4) If U is an ideal of a ring R with a unit element 1 and $1 \in U$, then prove that U = R.
- (5) Prove that $\bar{3} \mid \bar{5}$ and $\bar{5} \mid \bar{3}$ in the commutative ring J_8 ; of integers modulo 8.
- (6) Let R be a Euclidean ring and $a \neq 0$, $b \neq 0$ in R. If b is unit in R, then prove that d(a) = d(a.b).

RAN-1183 [1] [P.T.O.]

- (7) Justify: $\bar{4}$ and $\bar{8}$ are relatively prime elements in the Euclidean ring J_{11} ; of integers modulo 11.
- (8) Define a prime element in a Euclidean ring. Which are the prime elements in the Euclidean ring J_7 ; of integers modulo 7?

2. Attempt any TWO:

(10)

- (1) Prove that every finite integral domain is a field.
- (2) Prove that the commutative ring D is an integral domain if and only if a, b, $c \in D$ with $a \ne 0$; the relation a. b = a. c implies that b = c holds in D.
- (3) Define a Boolean ring. Prove that every Boolean ring is commutative.

3. Attempt any TWO:

(10)

- (1) Define the Kernel of a homomorphism. Let $\phi : R \to R'$ be a homomorphism of a ring R into a ring R'. Then prove that: $\phi(0) = 0'$ and $\phi(-a) = -\phi(a)$; for every a in R.
- (2) Prove that a homomorphism $\phi: R \to R'$ of a ring R into a ring R' is an isomorphism if and only if $I(\phi) = (0)$; where I(0) is the Kernel of a homomorphism ϕ .
- (3) If R is a commutative ring with a unit element 1 and its only ideals are (0) and R itself, then prove that R is a field.

4. Attempt any TWO:

(10)

- (1) Define a Euclidean ring. Prove that every field is a Euclidean ring.
- (2) Prove that the relation of "associates" in a commutative ring *R* with a unit element is an equivalence relation on *R*.
- (3) Define a greatest common divisor of two elements in *a* commutative ring. Prove that any two greatest common divisors of elements *a*, *b* in a Euclidean ring *R* are associates.

5. Attempt any TWO:

(10)

- (1) Define relatively prime elements in a Euclidean ring. If a and b are relatively prime elements in a Euclidean a and a bc, then prove that a c.
- (2) Let R be a Euclidean ring. If $A = (a_0)$ is a maximal ideal of R, then prove that a_0 is a prime element in R.
- (3) Define unit in a commutative ring with a unit element. Let R be a Euclidean ring and $a \ne 0$, $b \ne 0$ in R. If b is not unit in R, then prove that d(a) < d(a, b).

RAN-1183] [2]