RAN-1189

B.Sc. Sem-VI Examination

March / April - 2019
Mathematics-MTH-6001 (EG)
(Operations Research-II)

સૂચના : / Instructions

Instruction:

(1) All questions are compulsory.
(2) Figures to the right indicate marks of the question.
(3) Follow usual notations.
(4) Use of non-programmable calculator is allowed.
(5) Total marks 50.

Que:1 (a) Answer any TWO as directed.
(1) Write two applications of the assignment problem.
(2) Solve the following Assignment problem:

	I	II	III
A_{1}	10	8	6
A_{2}	6	7	9
A_{3}	9	12	10

(3) Write the general mathematical form of Transportation problem.

Que:1(b) Attempt any ONE.
(1) Consider the game with following payoff table. Determine the value of the game.

	Player B	
Player \boldsymbol{A}	B1	$\boldsymbol{B 2}$
\boldsymbol{A}_{1}	7	-2
\boldsymbol{A}_{2}	5	4

(2) Consider the game with following payoff table. Determine the value of the game.

	Player B	
Player \boldsymbol{A}	B1	B2
\boldsymbol{A}_{1}	-3	4
\boldsymbol{A}_{2}	2	-1

Que:2 Attempt any TWO.
(1) Find the assignment of workers to machines that will minimize the total time taken.

Machines

		M_{1}	M_{2}	M_{3}	M_{4}	M_{5}
Manufacturers	A_{1}	25	28	29	28	31
	B_{2}	31	29	30	31	29
	C_{3}	27	26	28	27	26

(2) Solve the Assignment Problem:

		Jobs				
		J_{1}	J_{2}	J_{3}	J_{4}	J_{5}
Employee	E1	5	5.1	4.2	5.7	4.9
	E2	5.1	1.5	5.8	6	4.3
	E3	6.5	5.5	4.6	6.4	6

(3) Solve the Assignment Problem:

Salesmen

		A	B	C	D	D
	I	25	30	38	50	15
	II	28	26	35	50	20
Counters	III	30	35	40	55	18
	IV	15	25	30	48	12
	V	30	27	32	48	16

(4) Use graphical method to solve the following game and find the value of the game.

Player B

Player A	A_{1}	B_{1}	B_{2}	B_{3}	B_{4}
		1	4	6	8
		8	3	4	2

Que:3 Attempt any TWO.
(1) Find an initial basic feasible solution for the following Transportation problem using
(i) North west corner method
(ii) Least cost method.

		Destinations					
		$\boldsymbol{D}_{\mathbf{1}}$	$\boldsymbol{D}_{\mathbf{2}}$	$\boldsymbol{D}_{\mathbf{3}}$	$\boldsymbol{D}_{\mathbf{4}}$	Supply	
Sources	$\mathrm{S}_{\mathbf{1}}$	21	6	15	3	$\mathbf{1 1 0}$	
	$\mathrm{~S}_{\mathbf{2}}$	17	18	4	23	$\mathbf{1 3 0}$	
	$\mathrm{~S}_{\mathbf{3}}$	32	27	18	14	$\mathbf{1 9 0}$	
	Demand		$\mathbf{6 0}$	$\mathbf{1 0 0}$	$\mathbf{1 2 0}$	$\mathbf{1 5 0}$	

(2) Determine an optimal solution for the following transportation problem using MODI method:

		Destinations					
		$\boldsymbol{D}_{\mathbf{1}}$	$\boldsymbol{D}_{\mathbf{2}}$	$\boldsymbol{D}_{\mathbf{3}}$	$\boldsymbol{D}_{\mathbf{4}}$	Supply	
Sources	$\boldsymbol{S}_{\mathbf{1}}$	3	6	8	5	$\mathbf{2 0}$	
	$\boldsymbol{S}_{\mathbf{2}}$	6	1	2	5	$\mathbf{2 8}$	
	$\boldsymbol{S}_{\mathbf{3}}$	7	8	3	9	$\mathbf{1 7}$	
	Demand		$\mathbf{1 5}$	$\mathbf{1 9}$	$\mathbf{1 3}$	$\mathbf{1 8}$	

(3) Solve the following transportation problem:

		Destinations						
		$\boldsymbol{D}_{\mathbf{1}}$	$\boldsymbol{D}_{\mathbf{2}}$	$\boldsymbol{D}_{\mathbf{3}}$	$\boldsymbol{D}_{\mathbf{4}}$	$\boldsymbol{D}_{\mathbf{5}}$	Supply	
Sources	$\boldsymbol{S}_{\mathbf{1}}$	5	3	4	6	4	$\mathbf{4}$	
	$S_{\mathbf{2}}$	4	3	10	5	6	$\mathbf{2}$	
	$\boldsymbol{S}_{\mathbf{3}}$	4	6	9	4	3	$\mathbf{4}$	
	Demand		$\mathbf{2}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{2}$	

(4) Use graphical method to solve the following game and find the value of the game.

		Player \boldsymbol{B}	
		$\boldsymbol{B}_{\mathbf{1}}$	$\boldsymbol{B}_{\mathbf{2}}$
Player \boldsymbol{A}	$\boldsymbol{A}_{\mathbf{1}}$	2	5
	$\boldsymbol{A}_{\mathbf{2}}$	4	6
	$\boldsymbol{A}_{\mathbf{3}}$	3	3
	$\boldsymbol{A}_{\mathbf{4}}$	8	7
	$\boldsymbol{A}_{\mathbf{5}}$	4	8
	$\boldsymbol{A}_{\mathbf{6}}$	5	4

