RAN-1040

T.Y.B.Sc. Sem-V Examination

March / April - 2019

Group Theory

Time: 2 Hours]

સૂચના : / Instructions
(1)

Seat No.:

(2) All questions are compulsory.
(3) Figures to the right indicate marks of the corresponding questions.
(4) Follow usual notations.
(5) Use of non-programmable scientific calculator is allowed.

Que 1: Answer any FIVE of the following:

1) Find the remainder when 5^{36} divided by 37 .
2) True or False: If $a \mid x$ and $b \mid x$ then $(a+b) \mid x$. Justify your answer.
3) If G is a group such that $(a \cdot b)^{2}=a^{2} \cdot b^{2}$ for all $a, b \in G$, then show that G is abelian.
4) In S_{3} give an example of $x, y \in \mathrm{~S}_{3}$ such that $(x y)^{2} \neq x^{2} y^{2}$
5) If $a \in G$ then define normalizer $\mathrm{N}(a)$.

If $G=\left\{\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right) / a^{2}+b^{2} \neq 0 ; a, b \in R\right\}$ is a group and $\left(\begin{array}{rr}2 & 3 \\ -3 & 2\end{array}\right) \in G$ then find $N\left(\left(\begin{array}{rr}2 & 3 \\ -3 & 2\end{array}\right)\right)$.
6) Let $o(G)=31$. Is G cyclic? Justify your answer.
7) If $o(G)=24$ and H is a subgroup of G such that $o(H)=12$. Is H a normal subgroup of G ? Justify your answer.
8) Is every subgroup of $Z(G)$ a normal subgroup of G ? Justify your answer.

Que 2: Answer any TWO of the following:

1) If a, b are integers, not both 0 , then prove that (a, b) exists. Moreover, show that there exists integers m_{0} and n_{0} such that $(a, b)=m_{0} a+n_{0} b$.
2) Prove that the relation "congruence modulo n " defines an equivalence relation on the set of integers.
3) To check that n is a prime number, prove that it is sufficient to show that it is not divisible by any prime number p, such that $p \leq \sqrt{n}$.

Que 3: Answer any TWO of the following:

1) If H is any arbitrary non-empty subset of a group G then state and prove the necessary and sufficient condition for H to be a subgroup of G.
2) Let G be the set of all symbols $a_{i} ; i=0,1,2, \ldots . ., 6$ where $a_{i} \cdot a_{j}=a i+j$; if $i+j<7$ and $a_{i} \cdot a_{j}=a_{i+j-7}$ if $i+j \geq 7$. Prove that G is an abelian group under the given operation.
3) In a group G, if $a, b \in G$ are any elements and $(a b)^{n}=a^{n} b^{n}$ for three consecutive integers n, then prove that G is abelian.

Que 4: Answer any TWO of the following:

1) State and prove Lagrange's Theorem.
2) Prove that every subgroup of cyclic group is cyclic.
3) Let H be a subgroup of a group G and $a \in G$. If $a H a^{-1}=\left\{a h a^{-1} \mid h \in H\right\}$, then show that $a H a^{-1}$ is a subgroup of G. Also find $o\left(a a^{-1}\right)$, if H is finite.

Que 5: Answer any TWO of the following:

1) State and prove fundamental theorem of homomorphism.
2) Let G be the group of integers under addition. Let N be the subgroup of G which contains all the multiples of 5 . Find all elements of quotient group G / N. Also find index of N in G.
3) Define: Normal subgroup. Prove that a subgroup N is a normal subgroup of a group G if and only if $g N g^{-1}=N$; for every $g \in G$.
