

RAN-1072

T.Y.B.Sc. (Computer Science) - Sem-V Examination

March / April - 2019

Generic Elective (IDS) 507 - 2 Operation Research

Time: 2 Hours] [Total Marks: 50

સૂચના : / Instructions

નીચે દર્શાવેલ ☞ નિશાનીવાળી વિગતો ઉત્તરવહી પર અવશ્ય લખવી. Fill up strictly the details of ☞ signs on your answer book	Seat No.:
Name of the Examination:	
▼ T.Y.B.Sc. (Computer Science) - Sem-V	
Name of the Subject :	
Subject Code No.: 1 0 7 2	Student's Signature

Instructions:

- 1) All questions are compulsory
- 2) Non-programmable scientific calculator is allowed

1. Answer the following.

[14]

- 1. What is operation research?
- 2. What is basic feasible solution? List types of basic feasible solution.
- 3. Write a mathematical form of LPP.
- 4. What is unbounded solution?
- 5. Find IBFS using LCM:

Destination

		D1	D2	D3	D4	Supply
Source	S1	12	8	20	10	8
	S2	21	17	14	5	12
	S3	23	12	9	4	25
	Demand	12	13	11	9	_

RAN-1072] [1] [P.T.O.]

- 6. What do you mean by unbalanced assignment problem?
- 7. List characteristics of operation research.

2. Solve the following.

[12]

1. The manager of an oil refinery must decide on the optimum mix of 2 possible blending process of 1 which the inputs and outputs production runs as follows:

Process	Input		Input		Out	tput
	Crude A	Crude B	Gasoline X	Gasoline Y		
1	6	4	6	9		
2	5	6	5	5		

The maximum available of crude A and B are 250 units and 200 units respectively. Market demand shows that at least 150 units of gasoline X and 130 units of gasoline Y must be produced. The profit per production run from process 1 and 2 are Rs. 4 and Rs. 5 respectively. Formulate the problem for maximizing the profit.

2. Solve the following problem using graphical method

Find the maximum value of z = 6x1 + x2 subject to constraints

$$2x1 + x2 >= 3$$
,

$$x1 - x2 >= 0$$
 and

$$x1, x2 >= 0.$$

OR

2. Solve the following LPP using simplex method.

Max Z= 10x1 + x2 + 2x3 subject to the constraints

$$x1 + x2 - 2x3 \le 10$$

$$4x1 + x2 + x3 \le 20$$

$$x1, x2,x3>=0$$

3. Solve the following.

[12]

1. Solve the following LPP using simplex method.

Max Z = x1 - x2 + 3x3 subject to the constraints

$$x1 + x2 + x3 \le 10$$

$$2x1 - x3 <= 2$$

RAN-1072 |

[2]

[Contd.

$$2x1 - 2x2 + 3x3 \le 0$$

 $x1, x2,x3 \ge 0$

2. Find the assignment of salesman to district that will result in maximize sale.

	A	В	C	D	E
1	32	38	40	28	40
2	40	24	28	21	36
3	41	27	33	30	37
4	22	38	41	36	36
5	29	33	40	35	39

OR

2. Solve the following transportation problem & check this solution is optimal or not.

		Depot				
		Dl	D2	D3	D4	Available
Car	01	1	2	1	4	30
	02	3	3	2	2	50
	03	4	2	5	5	20
	Required	20	40	30	10	

4. Solve the following. [any two]

[12]

1. solve the following game graphically

		Р	layer A	
Player B	2	2	3	-2
	4	3	2	6

2. Explain the principle of dominance and solve the following game.

	i	ii	iii	iv	В
1	-5	3	1	20	
2	5	5	4	6	
3	-4	2	0	5	

3. Solve the following assignment problem optimally:

	1	2	3	4
A	10	5	13	15
В	3	9	18	3
\mathbf{C}	10	7	3	2
D	5	11	9	7

[4]

RAN-1072]

[40]