RAN-1072

T.Y.B.Sc. (Computer Science) - Sem-V Examination
 March / April - 2019
 Generic Elective (IDS) 507-2 Operation Research

Time: 2 Hours]

સૂચના :/ Instructions

Seat No.:

Instructions:

1) All questions are compulsory
2) Non-programmable scientific calculator is allowed
1. Answer the following.
2. What is operation research?
3. What is basic feasible solution? List types of basic feasible solution.
4. Write a mathematical form of LPP.
5. What is unbounded solution?
6. Find IBFS using LCM:

Destination

Source

	D1	D2	D3	D4	Supply
S1	12	8	20	10	8
S2	21	17	14	5	12
S3	23	12	9	4	25
Demand	12	13	11	9	

6. What do you mean by unbalanced assignment problem?
7. List characteristics of operation research.

2. Solve the following.

1. The manager of an oil refinery must decide on the optimum mix of 2 possible blending process of 1 which the inputs and outputs production runs as follows :

Process	Input			Output	
	Crude A	Crude B		Gasoline X	Gasoline Y
1	6	4	6	9	
2	5	6	5	5	

The maximum available of crude A and B are 250 units and 200 units respectively. Market demand shows that at least 150 units of gasoline X and 130 units of gasoline Y must be produced. The profit per production run from process 1 and 2 are Rs. 4 and Rs. 5 respectively. Formulate the problem for maximizing the profit.
2. Solve the following problem using graphical method

Find the maximum value of $z=6 x 1+x 2$ subject to constraints $2 \mathrm{x} 1+\mathrm{x} 2>=3$,
$\mathrm{x} 1-\mathrm{x} 2>=0$ and
$\mathrm{x} 1, \mathrm{x} 2>=0$.

OR

2. Solve the following LPP using simplex method.

Max $Z=10 \times 1+\mathrm{x} 2+2 \times 3$ subject to the constraints
$\mathrm{x} 1+\mathrm{x} 2-2 \mathrm{x} 3<=10$
$4 \mathrm{x} 1+\mathrm{x} 2+\mathrm{x} 3<=20$
$\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3>=0$
3. Solve the following.

1. Solve the following LPP using simplex method.

Max $Z=x l-x 2+3 x 3$ subject to the constraints
$\mathrm{x} 1+\mathrm{x} 2+\mathrm{x} 3<=10$
$2 \mathrm{x} 1-\mathrm{x} 3<=2$
$2 \mathrm{x} 1-2 \mathrm{x} 2+3 \mathrm{x} 3<=0$
$\mathrm{xl}, \mathrm{x} 2, \mathrm{x} 3>=0$
2. Find the assignment of salesman to district that will result in maximize sale.

	A	B	C	D	E
1	32	38	40	28	40
2	40	24	28	21	36
3	41	27	33	30	37
4	22	38	41	36	36
5	29	33	40	35	39

2. Solve the following transportation problem \& check this solution is optimal or not.

	Depot					
	Car	D1	D2	D3	D4	Available
01		2	1	4	30	
02	3	3	2	2	50	
03	4	2	5	5	20	
	Required	20	40	30	10	

4. Solve the following. [any two]
5. solve the following game graphically

Player A

Player B | 2 | 2 |
| :--- | :--- |
| 4 | 3 |

3	-2
2	6

2. Explain the principle of dominance and solve the following game.

	i	ii	iii	iv
1	-5	3	1	20
2	5	5	4	6
3	-4	2	0	5

3. Solve the following assignment problem optimally:

	1	2	3	4
A	$\mathbf{1 0}$	5	13	15
B	3	9	18	3
C	10	7	3	2
D	5	11	9	7

